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CHAPTER 2 

 

THEORETICAL STUDY 

 

2.1 Transient Heat Conduction in Large Plane Walls, Long Cylinders and Solid 

       Spheres 

In general, temperature within a body changes from point to point as well as with time. 

Therefore the problems can be considered as three dimensional and time dependent. In one 

dimensional problem such as those associated with a large plane wall, a long cylinder and a 

sphere the variation of temperature has been considered to be only in one of the 

dimensions and time dependent. 

 

  

(a) A large plane wall                (b) A long cylinder        (c) A solid sphere  

 

     Figure 2.1: Schematic figures of the simple geometries in which heat transfer is one    

                         dimensional. [12] 

It has been consider a plane wall of thickness 2L, a long cylinder of radius ro, and a sphere 

of radius ro, initially at a uniform temperature Ti, as shown in Figure 2.1 at time t = 0. Each 

geometry has been placed in a large medium that is at a constant temperature T∞ and kept 

in that medium for t > 0. Heat transfer takes place between these bodies and their 

environments by convection with a uniform and constant heat transfer coefficient. It has 

been noted that all three cases possess geometric and thermal symmetry: the plane wall is 

symmetric about its centre plane, the cylinder is symmetric about its centreline and the 
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sphere is symmetric about its centre point. Radiation heat transfer has been neglected 

between these bodies and their surrounding surfaces.  

 

 

Figure 2.2: Transient temperature profiles in a plane wall exposed to convection 

                  from its surfaces for Ti > T∞                          

 

The variation of the temperature profile with time in the plane wall is illustrated in Figure 

2.2. When the wall is first exposed to the surrounding medium at T∞ < Ti at t = 0, the entire 

wall is at its initial temperature Ti. But the wall temperature at and near the surfaces starts 

to drop as a result of heat transfer from the wall to the surrounding medium. This creates a 

temperature gradient in the wall and initiates heat conduction from the inner parts of the 

wall toward its outer surfaces. It has been noted that the temperature at the centre of the 

wall remains at Ti until t = t2 and that the temperature profile within the wall remains 

symmetric at all times about the centre plane. The temperature profile gets flatter and 

flatter as time passes as a result of heat transfer and eventually becomes uniform at            

T = T∞. That is, the wall reaches thermal equilibrium with its surroundings. At that point, 

the heat transfer stops since there is no longer a temperature difference. Similar discussions 

can be given for the long cylinder or sphere. 

 

The formulation of the problems for the determination of the one dimensional transient 

temperature distribution T(x, t) in a wall results in a partial differential equation, which can 

be solved using the separation of variables. The solution, however, normally involves 

infinite series, which are inconvenient and time-consuming to evaluate. Therefore, there is 

clear motivation to present the solution in tabular or graphical form. However, the solution 
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involves the parameters x, L, t, k, α, h, Ti and T∞ which are too many to make any 

graphical presentation of the results practical. In order to reduce the number of parameters, 

the problem can be nondimensionalized by defining the following dimensionless 

quantities; 

 

 Dimensionless temperature               θ = ���∞����∞
                                 (2.1) 

 Dimensionless distance                           x� =  	

                                     (2.2) 

Dimensionless time                                         τ = α�

�              (2.3) 

Dimensionless heat transfer coefficient          Bi = hLk                                      (2.4) 

The nondimensionalization enables us to present the temperature in terms of three 

parameters only: x�, Bi and τ. This makes it practical to present the solution in graphical 

form. The dimensionless quantities defined above for a plane wall can also be used for a 

cylinder or sphere by replacing the space variable x by r and the half thickness L by the 

outer radius ro. It has been noted that the characteristic length in the definition of the Biot 

number is taken to be the half thickness L for the plane wall and the radius ro for the long 

cylinder and sphere. [12] 
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2.2 Initial and Boundary Conditions 

2.2.1 Initial Condition 

It has been considered the plane wall. The temperature at any point on the wall at a 

specified time also depends on the condition of the wall at the beginning of the heat 

conduction process. Such a condition, which is usually specified at time t = 0, is called the 

initial condition, which is a mathematical expression for the temperature distribution of the 

medium initially. In rectangular coordinates, the initial condition for one dimensional can 

be specified in the general form as 

 

 t= 0   T = f(x)                                                                                                    (2.5) 

 

Where the function f (x) represents the temperature distribution throughout the medium at 

time t = 0. When the medium is initially at a uniform temperature of Ti, the initial 

condition can be written as,  

 

 t = 0           T = Ti                                                                (2.6) 

 

2.2.2 Boundary Conditions 

The heat conduction equations are obtained using an energy balance on a differential 

element inside the medium and they remain the same regardless of the thermal conditions 

on the surfaces of the medium. The mathematical expressions of the thermal conditions at 

the boundaries are called the boundary conditions. From a mathematical point of view, 

solving a differential equation is essentially a process of removing derivatives or an 

integration process and thus the solution of a differential equation typically involves 

arbitrary constants. It follows that to obtain a unique solution to a problem, there is need to 

specify more than just the governing differential equation. The boundary conditions 

specify at the boundary of the region under consideration. For convenience in the analysis 

the boundary conditions can be separated into the following categories. 
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2.2.2.1 Specified Temperature Boundary Condition 

 

Specified temperature boundary conditions can be expressed as  

 

 T (0,t) = T1       T(L,t) = T2                                                                                (2.7) 

 

Where T1 and T2 are the specified temperatures at surfaces at x = 0 and x = L, respectively. 

The specified temperatures can be constant.  

 

2.2.2.2 Specified Heat Flux (Symmetry) Boundary Condition 

 

Some heat transfer problems possess thermal symmetry as a result of the symmetry in 

imposed thermal conditions. The temperature distribution in one half of the wall is the 

same as that in the other half. That is, the heat transfer problem in this wall has been 

possessed thermal symmetry about the centre plane at x = 0. Also, the direction of heat 

flow at any point in the wall has been toward the surface closer to the point, and there is no 

heat flow across the centre plane. Therefore, the centre plane can be seen as an insulated 

surface, and the thermal condition at this plane of symmetry can be expressed as  

 

 
��
�� = 0                                                                                 (2.8) 

 

This result can also be deduced from a plot of temperature distribution with a maximum, 

and thus zero slopes, at the centre plane wall. In the case of cylindrical (or spherical) 

bodies having thermal symmetry about the centre line (or midpoint), the thermal symmetry 

boundary condition requires that the first derivative of temperature with respect to (the 

radial variable) be zero at the centreline (or the midpoint). 

 

2.2.2.3 Convection Boundary Condition 

 

Convection is probably the most common boundary condition encountered in practice 

since most heat transfer surfaces are exposed to an environment at a specified temperature. 

The convection boundary condition is based on a surface energy balance expressed as 
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�Heat conduction at the surface in a selected direction % =  �ℎ'() *+,-'*).+, () )ℎ'  /012(*'/  ., )ℎ'/(3' 4.1'*).+, % 

 

For one dimensional heat transfer in the x direction in a plate of thickness 2L, the 

convection boundary conditions one surfaces can be expressed as 

 

   −6 ��
�� = ℎ (� − �8)                                                                 (2.9) 

   

Where h is the convection heat transfer coefficients and �∞ is the temperatures of the 

surrounding medium. Convection boundary condition becomes as follows. 

 

   
�:
�� + <(� − �8) = 0                                                         (2.10) 

 

Where < = =
> is assumed as a constant. [13] 
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2.3 Analytical Solution 

2.3.1 Large Plane Wall 

The transient temperature distribution in relatively thin slab of material, which is cooled 

one or both side, can be approximated, away from the edge, as one dimensional. Such 

situations are frequently encountered in engineering application. As an example, a plane 

wall has been considered, initially at t = 0 at a uniform temperature Ti, which is subjected 

to the same cooling conditions on both sides for times t ≥ 0. This plane wall is considered 

to be sufficiently large in the y and z directions compared to its thickness 2L in the x 

direction.  

The heat transfer coefficient h on both surfaces is assumed to be constant. It is further 

assumed that the surrounding fluid temperature remains constant at T∞ during to whole 

cooling process. Under these conditions heat flow through the plane wall has been one-

dimensional in the x direction. If the thermophysical properties (k, ρ and c) are also 

assumed to be constant, the temperature differential equation is obtained as follows 

 
��:
��� =  ?

@  �:
�A                                                            (2.11) 

With the initial condition 

 T(x, 0) = Ti                                                                 (2.12) 

And the boundary conditions 

 x = 0         
�:
�� = 0                                                                                                (2.13) 

 x = L          
�:
�� + <(� − �8) = 0                                                                        (2.14) 

 

2.3.1.1 /ondimensionlizing Differential Equation 

Transient heat conduction differential equation for plane wall has been expressed as 

 
��:
��� =  ?

@  �:
�A                       
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Various dimensionless quantities are defined as follows 

Dimensionless distance                  BC =  �
D                        (2.15) 

Dimensionless temperature       E = :�:∞:F�:∞

                                 (2.16) 

Dimensionless time                                  G = @A
D�                                  (2.17) 

The left hand side of equation (2.11) 

 BC =  �
D 

 
��C 
�� =  ?

D 

 
�

 �� =  �
��C  ��C 

��  

 
�

�� =  ?
D  �

��C 

  
��

 ��� =  � 
�� H � 

��I =  � 
��  H?

D  �
��CI =  H?

D  �
��CI H?

D  �
��CI = ?

D�
��

��C�   
    

 
��:
��� = ?

D�
��:
��C� 

 E = :�:∞:F�:∞

 

 � = E (�J − �∞) +  �∞ 

 
��:
���   = ?

D�
�

��C H � KL (:F�:∞)M :∞N
��C I = 

?
D�

�
��C  O(�J − �∞)  �L 

��C P 

The left hand side of eqn. (2.11) is defined as follows 

 
��:
���   = ?

D�  (�J − �∞) ��L 
��C�                                                                             (2.18) 

The right hand side of eqn. (2.11) 

 
��
�A =  ��

�Q  �Q
�A  

where  G = @A
D�     
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then    
�Q
�A =  @

D�  

 
 �:
 �A =  @

D� 
�:
�Q 

 � = E (�J − �∞) +  �∞ 

 
�:
 �A = @

D� 
�KL(:F�:∞)M :∞N

�Q  

The right hand side of eqn. (2.11) are defined as follows 

�:
�A =  @

D� (�J − �∞) �L
�Q                                                                   (2.19) 

Substituting eqn. (2.18) and eqn.(2.19) in eqn. (2.11), yields 

   ?
D�  (�J − �∞) ��L 

��C�  =  ?
@  @

D� (�J − �∞) �L
�Q 

So the correlation of energy equation has been obtained as   

 
��L 
��C� =  �L

�Q                                                                                                (2.20) 

 

2.3.1.2 Analytical Solution with Separation of Variables 

Correlation of energy equation has been defined as   

 
��L
��C� =  �L

�Q                                                                                                        

With the initial condition  

 G = 0   E = 1                                                                                   (2.21) 

and the boundary conditions  

 BC = 0         
�E
��C = 0                                                                   (2.22) 

 BC = 1          
�L
��C + S.E = 0                                                                (2.23) 
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The dimensionless temperature θ is assumed as a product of X and T where X is function 

of BC only and T is the function of G only. 

 E = UT 

 U = 2(BC)   T = 2(G) 

 
?
V  W�V

W�C� = ?
X  WX

WQ = −YZ 

In this equation, Y is a constant. The left hand side is a function of the space variable BC, 
only, and the right hand side of the time variable G, alone; the only way this equality holds 

if both sides are equal to the same constant. And problem has been become as  

 
?
X

WX
WQ = −YZ                                                                    (2.24) 

 
W�V
W�C� + YZU = 0                                                                              (2.25) 

Solving of eqn. (2.24), yields 

 T = ['�\�Q                                                                                                         (2.26) 

Solving of eqn. (2.25),  

 U = ] sin Y BC +  S cos YBC                                                           (2.27) 

The boundary conditions for U = 2(BC)    
 BC = 0          

�L
�� = 0    

  E = UT    then    
�L
��C = T 4U

W�C = 0     
WV
W�C = 0 

 BC = 1            
�L
��C + S.E = 0 

 T WV
W�C + TS.U = 0    then    T ^WV

W�C + S.U_ = 0 

 BC = 0          
WV 
W�C = 0                                                                (2.28) 
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     BC = 1      
WV
W�C + S.U = 0                                                       (2.29) 

Applying the boundary condition eqn.(2.28) for; 

 U = ] sin Y BC +  S cos YBC = 0 

 BC = 0    
WV
W�C = ] Ycos Y BC −  S Ysin YBC = 0 

 = ]Y cos Y (0) −  SY sin Y(0) =  0 

 ]Y = 0      ] = 0    

then U =  S cos(YBC)                                                                       (2.30) 

Applying the boundary condition eqn. (2.29) for; 

             BC = 1    

 −YS sin(YBC) + S.S cos(YBC) = 0 

 −YS sin(Y) + S.S cos(Y) = 0 

 S. = Y tan Y                                                                                 (2.31) 

Separation of variables E (BC, G) = U(BC)T(G) [13] 

 E = UT = S cos(YaBC) ['�\b�Q 

             S[ = ]a 

 E = ∑ ]a∞ad? cos(YaBC ) '�\b�Q                                                              (2.32) 

The constant ]a in eqn. (2.32) are determined from the application of the initial condition 

eqn. (2.21) that is 

 G = 0      E = 1 

 1 = ∑ ]a∞a cos(Y,B� )    where    ]a = e cos(\b�C)W�Cf�f g  
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  h = e cosZ(YaBC) 4BC?�?  

It can be rewritten as  

 h = e cosZi�? (YaBC)4BC + e cosZ(YaBC)4BC?i  

 = �C
Z + Z jkl \b�CM cos \b�C

m\b  n 0−1o +  �C
Z + Z jkl \b�CM pqj \b�C

m\b  n10o 

          = − ^− 1
2 + 2 sin(−Y,)+ cos(−Y,)

4Y, _ + ^1
2 + 2 sin(−Y,)+ cos(−Y,)

4Y, _ 

 = + ^?
Z + Z jkl(�\b)M pqj(�\b)

m\b _ 

 = ?
Z + Z jkl \bM pqj \bm\b + ?

Z + Z jkl \bM pqj \bm\b  

   h = 1 + jkl \b pqj \b\b  

             e cos(YaBC)4B =?�?  ?
\b sinYa(BC) n 1−1o = ?

\b KsinYa − sin(−Ya)N = 2 jkl \b\b       

  ]a = 4 sin Y,2Y,+sin(2Y,)                                                                        (2.33) 

Substituting ]a in eqn. (2.32), dimensionless temperature distribution has been defined as 

follows, 

 E = ∑ 4 sin Y,2Y,+sin(2Y,)∞ad? cos(YaBC) '�\�Q                                                         (2.34) 

Where the characteristic values Ya are the positive roots of  

 S. = Ya tan Ya                                                                          (2.35) 

Where S. = =
> . Here, it is to be noted that the number of roots of eqn. (2.35) are infinite. 

Although they cannot be obtained by ordinary algebraic methods, they can be found 

numerically or determined graphically. 
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2.3.2 Long Cylinder  

The solid cylinder has been let under consideration be heated initially to some known 

axially symmetric temperature distribution T and then suddenly at t = 0, be placed in 

contact with a fluid at temperature T∞. The heat transfer coefficient h at the surface of the 

cylinder is constant. In addition, it has been assumed that the temperature of the 

surrounding fluid remains constant at T∞ during the whole cooling process for t ≥ 0. If the 

thermophysical properties (k, t and c) are also assumed to be constant, the temperature 

differential equation is defined as follows  

 
?
u

�
�u H1 �:

�uI =  ?
@  �:

�A                                                                                  (2.36) 

With the initial condition 

 T(r, 0) = Ti                                                                                                          (2.37) 

And the boundary conditions (symmetric) 

 r = 0         
�:
�u = 0                                                                            (2.38) 

 r = 1i          
�:
�u + <(� − �8) = 0                                                            (2.39) 

 

2.3.2.1 /ondimensionlizing Differential Equation 

Transient heat conduction differential equation for long cylinder has been expressed as 

  ?u �
�u H1 �:�1I =  ?

@  �:
�A                                    

Various dimensionless quantities are defined as follows 

1C =  u
uv   = dimensionless distance                                                        (2.40) 

E = :�:∞:F�:∞

  = dimensionless temperature                       (2.41) 

G = @A
uv�   = dimensionless time (Fourier number)                                (2.42) 

Nondimesionlizing left hand side of eqn. (2.36) as 
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 1 w = u
uv                      

�uC
�u = ?

uv 

 
�

�u =  �
�u w H�u w

�u I 

 
�

�u =  �
�u w H ?

uvI     
�

�u =  H ?
uvI �

�u w  

 
�:
�u = H ?

uvI �:
�u w  

 E =  :� :∞:F�   :∞

 

 � = E(�J −   �∞) + �∞ 

 
�:
�u w = �KL(:F�  :∞)M:∞N

�u w   

 
�:
�u w =  (�J −   �∞) �L

�u w   

 
�:
�u w = H ?

uvI (�J −   �∞) �L
�u w     and  1 w = u

uv      1 = 1 w 1i 

 
?
u

�
�u H1 �:

�uI = 
?

u w .uv H ?
uvI �

�u w ^1 w 1i H ?
uvI (�J −   �∞) �L

�u w_ 

 =  ?
u w .uv H ?

uvI �
�u w ^1 w 1i H ?

uvI (�J −   �∞) �L
�u w_  

 
?
u

�
�u H1 �:

�uI =  (�J −   �∞) ?
u w

?
uv�

�
�u w H1 w �L

�u wI                                                     (2.43) 

Nondimesionlizing right hand side of eqn. (2.36) as 

 
�:
�A = �:

�Q  �Q
�)   

 G = @A
uv�         

��
�Q = @

uv� 
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�:
�A = @

uv�
�:
�Q  

 
�:
�Q = ��G KE(�J −   �∞) + �∞N  

 
�:
�Q =  (�J −  �∞) �L

�Q 

 
�:
�A = @

uv� (�J −   �∞) �L
�Q 

 
?
@  ��

�A = ?
uv� (�J −   �∞) �L

�Q                                                                          (2.44) 

Substituting eqn. (2.43) and eqn. (2.44) in eqn. (2.36),   

 (�J −   �∞) ?
u w

?
uv�

�
�u w H1 w �L

�u wI =  ?
uv� (�J −   �∞) �L

�Q 

Energy equation has been obtained as follows; 

 
?
u w

�
�u w H1 w �L

�u wI =  �L
�Q                                                                          (2.45) 

For dimensionless temperature distribution, the initial condition 

 τ = 0          E = 1                                                                                                            (2.46) 

And the boundary conditions  

 1 w = 0           
�L
�u w = 0                                                                           (2.47) 

 1 w = 1           
�L
�u w + S.E = 0                                                                  (2.48)  

 

2.3.2.2 Analytical Solution with Separation of Variables 

Transient heat conduction correlation of energy equation for cylinder has been expressed 

as  

  
?
u w

�
�u w H1 w �L

�u wI =  �L
�Q                                                
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The boundary conditions  

 1 w = 0         
�E
�u w = 0                                                                                    (2.49) 

 1 w = 1          
�E
�u w + S.E = 0                                                               (2.50)  

And the initial condition 

 τ = 0         E = 1                                                                                                             (2.51) 

Problem solution with separation of variables [13] 

 E = yT                y = 2(1 w)      and    T = 2(G) 

 
�L
�u w =  T Wz

Wu w 

 
�L
�Q = y WX

WQ 

 
?
u w

W
Wu w H1 wT Wz

Wu wI =  y WX
WQ 

 
?
z

?
u w

W
Wu w H1 w Wz

Wu wI =  ?
X

WX
WQ =  −YZ 

In this equation, Y is a constant. The left hand side is a function of the space variable 1 w, 

only, and the right hand side of the time variable τ, only; the only way this equality holds if 

both sides are equal to the same constant. And problem can be become as  

 
?
X

WX4G =  −YZ                                                                          (2.52) 

 
?
z

?
u w

W
Wu w H1 w Wz

Wu wI =  −YZ                                                                           (2.53) 

Solving of eqn. (2.52) is obtained as follows  

 T = ['�\�Q                                                                            (2.54) 

 Eqn. (2.53) becomes as; 



20 

 

 
?
z

?
u w

W
Wu w H1 w Wz

Wu wI =  −YZ 

 
?
u w

W
Wu w H1 w 4y

Wu wI =  −YZy 

 
?
u w ^Wz

Wu w + 1 w W�z
Wu w �_ = −YZy 

Bessel function equation of order 0 ({ = 0) [13] 

 
W�z
Wu w � + ?

u w
Wz
Wu w + YZy = 0                                                                          (3.55) 

Solving of eqn. (2.55) 

 y = ]|i(Y1 w) + S}i(Y1 w)                                                                           (2.56) 

The boundary condition for Bessel function equation of order 0   

 1 w = 0         
�L
�u w = 0     

  
�

�u w (yT) = 0       
Wz
Wu w = 0 

 1 w = 0                    
Wz
Wu w = 0                                                (2.57) 

 1 w = 1       
�L
�u w + S.E = 0   

 T Wz
Wu w + S.yT = 0   then   T ^Wz

Wu w + S.y_ = 0 

 1 w = 0        
4y
Wu w = 0 

 1 w = 1      
Wz
Wu w + S.y = 0                                                                  (2.58) 

Applying first boundary condition, 

 1 w = 0        
4y
Wu w = 0      

4y
Wu w = ^] W

Wu w |i(Y1 w) + S W
Wu w }i(Y1 w)_u wdi = 0 
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W

Wu w |i(Y1 w) = −Y|?(Y1 w) 

 
W

Wu w }i(Y1 w) =  −Y}?(Y1 w) 

 K−]Y|?(Y1 w) − SY}?(Y1 w)Nu wdi = 0 

 −]Y|?(0) − SY}?(0) = 0        |?(0) = 0    and    }?(0) = −∞     S = 0 

 y = ]|i(Y1 w)                                                                              (2.59) 

Applying second boundary condition  

 1 w = 1      y = ]|i(Y1 w)   
Wz
Wu w = W

Wu w K]|i(Y1 w)N = −]Y|?(Y1 w) 

 
Wz
Wu w + S.y = 0 

 K−]Y|?(Y1 w) + S.]|i(Y1 w)Nu wd? = 0 

 ]K−Y|?(Y1 w) + S.|i(Y1 w)Nu wd? = 0 

 Y|?(Y) = S.|i(Y) 

 S. = \~f(\)
~v(\)                                                                                     

Biot number Bi = Ya ~f(\b)
~v(\b)                                                                                             (2.60) 

Separation of variables as  

 E (1 w, G) = U(1 w)T(G) 

 E =  ∑ ]a∞ad? |i(Ya1 w)'�\�Q                                                                    (2.61) 

Applying the initial condition eqn. (2.51), it can be obtained as  

 G = 0        E =  1 
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 1 =  ∑ ]a∞ad? |i(Ya1 w)1 

Which a Fourier – Bessel expansion of θ with the values is of Ya obtained from eqn. (2.61) 

hence, it has been  

 ]a =  e u w~v(\bu w)Wu wfve u w~�v(\bu w)Wu wfv
 

 e 1 w|i(Ya1 w)41 w?i = ~f(\b)
\b  

 h = e 1 w|Zi(Ya1 w)41 w?i =  Z
~�v(\b)  \�b

\�bO��f(�b)
��v(�b)M?P 

 ]a = Z
\b   ~f(\b)

~�v(\b)M~�f(\b)                                                                 (2.62) 

Substituting  ]a  in eqn.(2.61), Thus, the solution for the temperature distribution becomes  

 E =  ∑   Z
\b   ~f(\b)

~�v(\b)M~�f(\b)  ∞ad? |i(Ya1 w) '�\�Q                                                   (2.63) 

Where the characteristic values Ya are the positive roots of  

 Bi = Ya ~f(\b)
~v(\b)                                                                      (2.64) 

Where S. = =
> . Here, it is to be noted that the number of roots of eqn.(2.64) are infinite. 

Although they cannot be obtained by ordinary algebraic methods, they can be found 

graphically. 
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2.3.3 Solid Sphere   

For heat conduction problems posed in spherical coordinate systems which involve 

spherical symmetry. The transient heat conduction, in the absence of internal energy 

generation and if the thermophysical properties (k, t and c) are also assumed to be 

constant, the temperature differential equation is defined as follows  

 
?

u�
�

�u H1Z �:
�uI = ?

@
�:
�A                                                               (2.65) 

It has been considered the cooling of a solid sphere of radius 1i, for times t ≥ 0, in a 

medium maintained at a constant temperature �∞ with a constant heat transfer coefficient h. 

It has been assumed that the sphere under consideration has an initial temperature 

differential equation given by �J at t = 0.  

The initial condition  

 t = 0     T(r, 0) = Ti                                                                                                (2.66) 

And the boundary conditions  

 r = 0         
�:
�u = 0                                                                           (2.67) 

 r = 1i        
��
�u + <(� − �8) = 0                                                    (2.68) 

 

2.3.3.1 /ondimensionlizing Differential Equation 

Transient heat conduction differential equation for sphere can be expressed as 

 
?

u�
�

�u H1Z �:
�uI = ?

@
�:
�A                                                    

Various dimensionless quantities are defined as follows 

 1C =  u
uv   = dimensionless distance                              (2.69) 

 E = :�:∞:F�:∞

  = dimensionless temperature              (2.70) 

     G = @A
uv�   = dimensionless time                                                            (2.71) 
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For nondimesionlizing left hand hand side of eqn. (2.65) 

 
?

u�
�

�u H1Z �:
�uI = ?

@
�:
�A             1 = 1C 1i        1C = u

uv 

 
�

�u = �
�uC

�uC
�u 

 
WuC
Wu = ?

uv 

 
�:
�A = ?

uv
�:
�uC 

 � = E(�J − �∞)�∞ 

 
�:
�u = ?

uv (�J − �∞) �:
�uC      �:

�uC = �
�uC KE(�J − �∞)N 

 
?

u�
?
uv

�
�uC ^1Z ?

uv (�J − �∞) �:
�uC_ 

 (�J − �∞) ?
uC�uv�

?
uv

�
�uC ^1CZ1iZ ?

uv
�L
�uC_ 

 
?

u�
�

�u H1Z �:
�uI = (�J − �∞) ?

uC�
?

uv�
�

�uC ^1CZ �L
�uC_                                               (2.72) 

For nondimesionlizing right hand side of eqn. (2.65) 

 G = @A
uv�   

�
�A = �

�Q
�Q
�A     

�G
�A = @

uv� 

 
�Q
�A = @

uv�
�:
�Q  

 
?
@

�Q
�A = ?

uv�
�:
�Q  

�:
�Q = �

�Q KE(�J − �∞) + �∞N 

 
�:
�Q = (�J − �∞) �L

�Q  

 
?
@

�:
�A = ?

uv�  (�J − �∞) �L
�Q                                                                          (2.73) 
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Substituting eqn. (2.72) and eqn.(2.73) in eqn. (2.65) 

 (�J − �∞) ?
uC�

?
uv�

�
�uC ^1CZ �L

�uC_ = ?
uv�  (�J − �∞) �L

�Q 

 
?

uC�
�

�uC ^1CZ �L
�uC_ = �L

�Q 

Governing equation of the solid sphere has been obtained as follows; 

 
��L
�uC� + Z

u
�L
�uC = �L

�Q                                                                                      (2.74) 

With the initial condition 

 τ = 0     E = 1                                                                                                                               (2.75) 

and the boundary conditions 

 1 w = 0         E = 2.,.)'                                                                                        (2.76) 

 1 w = 1          
�L
�u w + S.E = 0                                                                                   (2.77)  

 

2.3.3.2 Analytical Solution with Separation of Variables  

Correlation of energy equation has been defined as follows     

 
��L
�uC� + Z

u
�L
�uC = �L

�Q                                                              

The boundary conditions   

 1 w = 0         E = 2.,.)'                                                                                        (2.78) 

     1 w = 1          
�E
�u w + S.E = 0                                                                                    (2.79) 

With the initial condition   

 τ = 0   E = 1                                                            (2.80) 

In terms of U(1C, G) = 1CE(1C, G) [14], this problem has been become as follows 
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��
�uC� = ��

�Q  

The boundary conditions  

 1C = 0                      � = 0                                                                                   (2.81) 

      1C = 1                
��
�u = ^1 − =

>_ �                                                                     (2.82) 

Since the boundary conditions eqn.(2.81) and eqn.(2.82) are homogeneous the assumption 

of the existence of product solution of the form U(1C, G) = y(1C) T(G) yields 

 
���
�uC� = ���G                    � = y T         y = 2(1C)            T = 2(G) 

 
?
z

W�z
WuC� = ?

X
WX
WQ = −YZ 

In this equation, Y is a constant. The left hand side is a function of the space variable 1C, 
only, and the right hand side of the time variable G, only; the only way this equality holds if 

both sides are equal to the same constant. And problem has been become as  

 
?
X

WX
WQ = −YZ                                                                                                          (2.83) 

 
W�z
WuC� + YZy = 0                                                                            (2.84) 

Solving of eqn.(2.84) 

  T = ['�\�Q                                                                                (2.85) 

Solving of eqn.(2.84) 

 y = ] sin(Y1C) + S cos(Y1C)                                                                                (2.86) 

The boundary conditions for y = 2(1C) 

 1C = 0           y = 0                                                                                              (2.87) 
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 1C = 1               
�z
�u = ^1 − =

>_ y                                                                     (2.88) 

 1C = 0             y = 0 

 y = ] sin(0) + S cos(0) = 0 

 S = 0 

 y =  ] sin(Y1C)                     (2.89) 

Applying second boundary condition (2.88)  

 1C = 1               
�z
�u = ^1 − =

>_ y           

 
�z
�u = ] Ycos(Y1C)           

    ] Ycos(Y1C) = ^1 − =
>_ ] sin(Y1C)        

 ] ^Ycos(Y1C) − ^1 − =
>_ sin(Y1C)_ = 0                and      ] ≠ 0            

     Ycos(Y1C) − ^1 − =
>_ sin(Y1C) = 0 

   Y pqj(\uC)
jkl(\uC) = ^1 − =

>_ jkl(\uC)
jkl(\uC) 

              Ycot Y = ^1 − =
>_ 

Where the characteristic values Ya are the positive roots of 

 1 − Ya cot Ya = S.                                                                                             (2.90) 

Which is a transcendental equation obtained from the application of the boundary 

condition. 
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The characteristic values eqn.(2.90) can be solved numerically to obtain the characteristic 

values Ya. 

The use of the initial condition eqn.(2.80) yields 

 G = 0             E = :F�:∞:F�:∞

= 1 

 � = ∑ ]a∞ad? '�\�Q sin(Ya1C) 

 1C = ∑ ]a∞ad? sin( Ya1C) 

Where the expansion coefficients ]a as,  

 ]a = e uC jkl(\buC)WuCfve jkl�(\buC)WuCfv
                                                           (2.91) 

Then, the transient dimensionless temperature distribution in the sphere has been becomes 

as follows  

 E = ∑ m(jkl \b�\bpqj \b)
Z\b�jkl(Z\b)∞ad? '�\�Q jkl(\buC)

(\buC)                                                             (2.92) 

 

 


